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Introduction 

In a wide range of imaging applications, spanning electron microscopy, astronomy, 
crystallography, three-dimensional imaging, and many other fields, it is often desired to 

retrieve the whole wave front, although only intensity can be measured in optics due to 
the extremely high frequency of light. Wave fronts are mathematical described with 

complex numbers as ( ) ( ) ( ) =  expA x A x i x  , where ( )A x   is the complex amplitude 

representing the wave front, ( )A x  is the non-negative modulus of ( )A x  which is simply 

called the amplitude of the wave front, ( ) x   is the phase, and x   is the spatial 

coordinates. The wave front amplitude ( )A x   is linked to its intensity ( )I x   through 

( ) ( )=
2

I x A x  and can be obtained through measurements. The phase, on the other hand, 

is not directly measurable. 

The determination of the phase generally requires interferometric methods, which is 
termed holography in imaging. However, interferometric approaches are usually complex 
in setup, require coherent light sources, are sensitive to numerous experimental 
conditions such as vibrations and misalignments, and are thus difficult to conduct. One 

is, therefore, interested in determining the two variables in a wave front, ( )A x  and ( ) x , 

using intensity measurements made at two sufficiently separated locations. The problem 
of retrieving phase information from intensity measurements is generally termed the 
phase retrieval problem. It is a typical “ill-posed” problem, meaning that the solution is 
not unique and is highly sensitive to small changes or noise in the input. 

The Gerchberg–Saxton algorithm [1] is a particularly successful approach to solving 
the phase retrieval problem, where one measurement is performed in the object domain 
and the other made in the Fourier domain. The algorithm relies on iterative Fourier-
inverse Fourier transforms back and forth between the object and Fourier domains with 
the application of the measured data in each domain. It can be generalized to use 
measurements from any two planes related by diffraction other than a Fourier pair. 
Fienup [2] later made further extensions to the Gerchberg–Saxton algorithm to use 
incomplete data, such as known constraints rather than physical measurements. A great 



number of related methods have been developed to address a large variety of problems 
[3,4].  

In the design of Diffractive Optical Elements (DOEs), usually the target image (the 
spatial intensity pattern that the DOE is required to produce) and the DOE complex 
transmittance or reflectance are a Fourier transform pair. Most often, the DOE is a pure 
phase mask with a unitary amplitude in its transmittance or reflectance. Therefore, the 
Gerchberg–Saxton algorithm can be effectively applied using these two known 
conditions as the measurements. 

Algorithm Description 

The principle of the Gerchberg–Saxton algorithm is shown in Figure 1, which operates 

alternately in the object-domain ( )= expA A i , where the target image resides, and the 

Fourier-domain ( )= expF F i  , where the Fourier transform of the image lies. The 

algorithm first initializes with an initial guess using the target amplitude and an arbitrary 

initial phase, which can be either a zero or a random matrix. The system then performs 

the kth (k = 0, 1, 2, 3, ...) iteration in the following sequence: 1. Construct kA  from kA  

and k  . 2. Compute the Fourier transform of kA   to enter the Fourier domain kF  . 3. 

Construct kF  using the measured Fourier amplitude kF , which in the case of DOE is a 

unitary matrix, and the phase  =k k . 4. Compute the inverse Fourier transform of kF  to 

return to the object domain kA . 5. Let 
+
=1 0kA A  and  

+
=1k k , and repeat steps 1-5 until 

convergence criteria are met. 

 

Figure 1. Diagram of the Gerchberg–Saxton Algorithm for the design of DOE. The algorithm 

initializes with an initial guessed phase and iterates over Fourier-inverse Fourier transforms 



back and forth between the object and Fourier domains to gradually approach the required 
image output and the retrieved phase. 

Despite the ill-posed nature of the phase retrieval problem, this simple iterative 
method usually provides a reasonable solution.  

Implementation 

Follow the steps outlined below for the implementation of the Gerchberg–Saxton 
algorithm. You can choose either MATLAB or Python as your programming language in 

your implementation. Note that all variables are implicitly matrices, reflecting their 

nature of a function of spatial coordinates. 

1. Calculate the target image amplitude from the target image intensity. 
2. Pre-transform of target image amplitude using ifftshift for the initial amplitude. 

See explanation below. 
3. Generate a random or uniform matrix as the initial phase. 
4. Construct the initial complex amplitude from the initial amplitude and phase. 
5. Perform Fourier transform over the constructed complex amplitude. 
6. Separate the resulting complex Fourier matrix into amplitude and phase. 
7. Construct a new complex Fourier matrix with the resulting phase and a unitary 

amplitude. 
8. Perform inverse Fourier transform over the new complex Fourier matrix. 
9. Separate the resulting complex image matrix into amplitude (which is also the 

output matrix in each iteration) and phase. 
10. Construct a new complex image matrix with the resulting phase and the target 

image amplitude. 
11. Repeat steps 5-11 until a predetermined number of iterations is reached or 

the error is smaller than a predetermined level. 

Figure 2 shows an example of the program output in a particular MATLAB 
implementation of the Gerchberg–Saxton algorithm. 

 

Figure 2. Example output from a particular MATLAB implementation of the Gerchberg–Saxton 
algorithm. (a) Retrieved phase. (b) Output image. (c) Relative error as a function of the number 
of iterations. 



Usually running the algorithm for a certain number of iterations (for example, 100) is 
sufficient to obtain a good result. A relative error can be formulated by comparing the 
output image with the target, which can be used as a criterion of convergence. The 
calculation of the relative error must consider careful normalizations to keep the 
variables at the same scale. 

Special attention should be paid to the subtle difference between a numerical Fourier 
transform and an optical Fourier transform. In an optical Fourier transform, the zero 
frequency is located at the center of an image, while in numerical Fourier transform, such 
as the fast Fourier transform routine provided in MATLAB or Python, the zero frequency is 
located at the corner. Therefore, an invocation of the ifftshift routine should be performed 
on the target image to shift the zero position to the corner. This will ensure that the 
optically reconstructed image from the DOE is one copy rather than four copies. 

Once the phase is retrieved, it is ready to be saved into an image file of proper format 
for printing. An additional implementation detail for printing with Nanoscribe is that the 
practical printable area is limited to approximately 1 mm2 (512×512 pixels at 2 µm pixel 
size) because of the printing time. Since the laser beam is larger than this size, some of 
the beam will directly pass, forming a bright spot at the center of the reconstructed image. 
This can be addressed by placing the pattern to be printed at an off-center position. 
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