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Introduction

In a wide range of imaging applications, spanning electron microscopy, astronomy,
crystallography, three-dimensional imaging, and many other fields, it is often desired to
retrieve the whole wave front, although only intensity can be measured in optics due to
the extremely high frequency of light. Wave fronts are mathematical described with

complex numbers as A(x):‘A(x)‘exp[igo(x)], where A(x) is the complex amplitude

representing the wave front, A(x)‘ is the non-negative modulus of A(x) which is simply

called the amplitude of the wave front, (p(x) is the phase, and x is the spatial

coordinates. The wave front amplitude ‘A(X)‘ is linked to its intensity /(x) through

l(x):‘A(x)‘2 and can be obtained through measurements. The phase, onthe other hand,

is not directly measurable.

The determination of the phase generally requires interferometric methods, which is
termed holography inimaging. However, interferometric approaches are usually complex
in setup, require coherent light sources, are sensitive to numerous experimental
conditions such as vibrations and misalignments, and are thus difficult to conduct. One

A(x)‘ and qo(x),

using intensity measurements made at two sufficiently separated locations. The problem

is, therefore, interested in determining the two variables in a wave front,

of retrieving phase information from intensity measurements is generally termed the
phase retrieval problem. It is a typical “ill-posed” problem, meaning that the solution is
not unique and is highly sensitive to small changes or noise in the input.

The Gerchberg-Saxton algorithm [1] is a particularly successful approach to solving
the phase retrieval problem, where one measurementis performed in the object domain
and the other made in the Fourier domain. The algorithm relies on iterative Fourier-
inverse Fourier transforms back and forth between the object and Fourier domains with
the application of the measured data in each domain. It can be generalized to use
measurements from any two planes related by diffraction other than a Fourier pair.
Fienup [2] later made further extensions to the Gerchberg-Saxton algorithm to use
incomplete data, such as known constraints rather than physical measurements. A great



number of related methods have been developed to address a large variety of problems
[3,4].

In the design of Diffractive Optical Elements (DOEs), usually the target image (the
spatial intensity pattern that the DOE is required to produce) and the DOE complex
transmittance or reflectance are a Fourier transform pair. Most often, the DOE is a pure
phase mask with a unitary amplitude in its transmittance or reflectance. Therefore, the
Gerchberg-Saxton algorithm can be effectively applied using these two known
conditions as the measurements.

Algorithm Description

The principle of the Gerchberg-Saxton algorithm is shown in Figure 1, which operates
alternately in the object-domain A=|Alexp(ip), where the target image resides, and the
Fourier-domain F:|F|exp(iCD), where the Fourier transform of the image lies. The

algorithm first initializes with an initial guess using the target amplitude and an arbitrary
initial phase, which can be either a zero or a random matrix. The system then performs

the kth (k =0, 1, 2, 3, ...) iteration in the following sequence: 1. Construct A from |Ak|
and ¢, . 2. Compute the Fourier transform of A to enter the Fourier domain F_. 3.
, which in the case of DOE is a

Construct F, using the measured Fourier amplitude |F/

unitary matrix, and the phase CD;( =®, . 4. Compute the inverse Fourier transform of F, to
return to the object domain A . 5. Let |Ak+1| :|AO| and ¢,.,=¢, , and repeat steps 1-5 until

convergence criteria are met.
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Figure 1. Diagram of the Gerchberg-Saxton Algorithm for the design of DOE. The algorithm

initializes with an initial guessed phase and iterates over Fourier-inverse Fourier transforms



Despite the ill-posed nature of the phase retrieval problem, this simple iterative

back and forth between the object and Fourier domains to gradually approach the required
image output and the retrieved phase.

method usually provides a reasonable solution.

Implementation

Follow the steps outlined below for the implementation of the Gerchberg-Saxton

algori
your

thm. You can choose either MATLAB or Python as your programming language in
implementation. Note that all variables are implicitly matrices, reflecting their

nature of a function of spatial coordinates.

1.
2.
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Calculate the target image amplitude from the target image intensity.
Pre-transform of targetimage amplitude using ifftshift for the initialamplitude.
See explanation below.

Generate a random or uniform matrix as the initial phase.

Construct the initial complex amplitude from the initial amplitude and phase.
Perform Fourier transform over the constructed complex amplitude.
Separate the resulting complex Fourier matrix into amplitude and phase.
Construct a new complex Fourier matrix with the resulting phase and a unitary
amplitude.

Perform inverse Fourier transform over the new complex Fourier matrix.
Separate the resulting complex image matrix into amplitude (which is also the
output matrix in each iteration) and phase.

10. Construct a new compleximage matrix with the resulting phase and the target

11.

Figure 2 shows an example of the program output in a particular MATLAB

imple

image amplitude.
Repeat steps 5-11 until a predetermined number of iterations is reached or
the error is smaller than a predetermined level.

mentation of the Gerchberg-Saxton algorithm.
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Figure 2. Example output from a particular MATLAB implementation of the Gerchberg—Saxton
algorithm. (a) Retrieved phase. (b) Outputimage. (c) Relative error as a function of the number
of iterations.



Usually running the algorithm for a certain number of iterations (for example, 100) is
sufficient to obtain a good result. A relative error can be formulated by comparing the
output image with the target, which can be used as a criterion of convergence. The
calculation of the relative error must consider careful normalizations to keep the
variables at the same scale.

Special attention should be paid to the subtle difference between a numerical Fourier
transform and an optical Fourier transform. In an optical Fourier transform, the zero
frequency is located at the center of an image, while in numerical Fourier transform, such
as the fast Fourier transform routine provided in MATLAB or Python, the zero frequency is
located at the corner. Therefore, an invocation of the ifftshift routine should be performed
on the target image to shift the zero position to the corner. This will ensure that the
optically reconstructed image from the DOE is one copy rather than four copies.

Once the phase is retrieved, it is ready to be saved into an image file of proper format
for printing. An additional implementation detail for printing with Nanoscribe is that the
practical printable area is limited to approximately 1 mm? (512x512 pixels at 2 um pixel
size) because of the printing time. Since the laser beam is larger than this size, some of
the beam will directly pass, forming a bright spot at the center of the reconstructed image.
This can be addressed by placing the pattern to be printed at an off-center position.
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